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Abstract We are now living in the data economy with data as the 

central fuel for operating data-driven business models. Especially 

incumbent companies are constantly challenged by rapid 

technological change and emerging business models that utilize 

data for value creation. Consequently, every company must 

rethink and, possibly, renew its business model over time to 

remain successful. Various tools have been proposed by practice 

and academia in order to enable and facilitate business model 

innovation. Although IT tools for supporting business model 

innovation proved to be meaningful, IT tools for data-driven 

business model innovation are relatively scarce. Hence, we aim 

for the design of an IT tool to enable and facilitate data-driven 

business model innovation. To reach the research objective, we 

employ a design science research approach accompanied by an 

experimental evaluation design. In this research, we propose four 

design features for IT tools supporting data-driven business 

model innovation. 

 

  



1 Introduction 

 

We are living in the data economy, where almost all aspects of everyday life are 

increasingly digitized, and a plethora of data is stored for analysis and subsequent 

value generation. The emergence of new technologies leads to an exponential 

increase in available data (Spiekermann 2019). At the same time, advances in data 

analysis, data storage, data sharing, and computing power accelerate the rise of 

the data economy (Zuboff 2019). The data economy depicts an economic 

perspective that understands data as an economic good with two primary 

purposes: the use and the trade of data (Bründl et al. 2015; Hüllmann et al. 2021). 

We focus on the use of data, where data is monetized by building a value chain 

around it (Spiekermann 2019). Consequently, data-driven business models are 

Business Models (BMs) that create value from data and data processing. 

Prominent sources of data include sensors, financial transactions, social media 

logs, or web-tracking. These data sources enable organizations to explore new 

data-based ways of creating value–ultimately allowing them to rethink and renew 

their traditional BMs toward data-driven BMs (Barann et al. 2019). However, 

innovating an organization’s BM toward a data-driven BM is a nontrivial 

undertaking (Barann et al. 2019; Foss and Saebi 2018). 

 

As a remedy, IT tools may facilitate the process of data-driven BM innovation 

(Bouwman et al. 2020). Fruhwirth et al. (2020) have already explored existing 

tools for ideating and evaluating data-driven BMs. Although various propositions 

(e.g., taxonomies, patterns, and visual tools) have been found in the literature, IT 

tools for supporting data-driven BM innovation remain scarce (Fruhwirth et al. 

2020). IT tools can be useful for supporting BM innovation processes in many 

forms (e.g., Hermann et al. 2021; de Reuver et al. 2016; Spiekermann et al. 2018). 

However, creating value from data is fundamentally different from digital 

business models, which merely understand IT as an enabler. It remains unclear 

how a data-driven perspective can be integrated into such IT tools to provide 

meaningful support for creative tasks like data-driven BM innovation (cf. 

Fruhwirth et al. 2020; Szopinski et al. 2020). Hence, we address one research gap 

emphasized by Fruhwirth et al. (2020, p. 16) and aim to design “software tools 

as an IT support for developing, evaluating[,] and managing […] [data-driven BM 

innovation] based on information systems design methods.” 

 

To address this research gap, we employ the design science research 

methodology by Peffers et al. (2007), which is appropriate for addressing real-



world problems in the area of digital business models. We use and enhance the 

literature review by Fruhwirth et al. (2020) and analyze existing contributions 

concerning the design of an IT tool to support data-driven BM innovation. Based 

on these insights, design features are articulated and transferred into mockups. 

These features are integrated on a conceptual level into an existing software tool 

previously developed by the focal research team. The next step is evaluating the 

design features regarding user satisfaction and how they support innovation and 

creativity during the ideation process. We contribute to both academia and 

practice. First, the design features extend the design knowledge with respect to 

IT tools supporting data-driven BM innovation. Second, practitioners gain a 

better understanding of the interplay between their BMs as well as the available 

and necessary data for data-driven BM innovation. The contributions are helpful 

for people collaborating on the design of data-driven business models. 

 

2 Related Work 

 

2.1 Data-driven Business Models 

 

Data-driven innovation represents a significant shift away from traditional 

approaches to BM development, where technology is viewed primarily as an 

enabler rather than a source of value creation. Creating value from data requires 

a fundamentally different approach, one that goes beyond simply integrating IT 

systems and instead focuses on leveraging data as a strategic asset. In this respect, 

three different types of data-driven innovation can be distinguished (Barann et 

al. 2019). First, data can be utilized to improve the organization’s business 

processes, which can enable subsequent innovation (Heberle et al. 2017; Schüritz 

and Satzger 2016; Sorescu 2017). Second, data-driven innovation may occur by 

enhancing individual BM components with data-driven aspects, e.g., product or 

service innovation (Heberle et al. 2017; Wiesböck and Hess 2020). Third, data-

driven innovation can lead to entirely novel data-driven BMs (Barann et al. 2019; 

Schüritz and Satzger 2016; Sorescu 2017). Organizations no longer think of data 

as merely a by-product (Hess and Lamla 2019) but use it to invent new ways of 

value creation, which involve the generation, collection, storage, processing, 

search, analysis, and possibly the trade of data (Hartmann et al. 2016). The value 

generated by collecting and processing data can be captured through novel 

products and services. Compared to traditional value chains, data scales up and 

never depletes (Shapiro and Varian 1999; Spiekermann 2019). Just how lucrative 

data as an economic good is, is being showcased by the financial success of major 



players (e.g., Google and Facebook) and start-ups that purely operate on data and 

deliver data-related products and services (Klein and Hüllmann 2018). 

 

2.2 Tools for Data-driven Business Model Innovation 

 

Recently, researchers have been focusing on data-driven BM innovation for 

incumbent organizations (Fruhwirth et al. 2020). In a comprehensive literature 

review, Fruhwirth et al. (2020) identified tools for ideating and evaluating data-

driven BMs. Recurring types of contribution, among others, are taxonomies, 

frameworks, patterns, types, and visual tools (Fruhwirth et al. 2020). Taxonomies 

and frameworks support structuring and analyzing an organization’s BM 

regarding existing key concepts of data-driven BMs (Fruhwirth et al. 2020; 

Hartmann et al. 2016). Patterns and types can help position an organization’s BM 

and “serve as an inspiration and blueprint” (Hartmann et al. 2016, p. 1400) for 

data-driven BMs. “Visual tools mediate collaboration and support ideation for 

data-driven innovations” (Fruhwirth et al. 2020, p. 14). 

 

Other contributions, which are underrepresented in the literature, are IT tools 

for data-driven BMs innovation (cf. Fruhwirth et al. 2020). IT tools have proven 

useful to support creative tasks in the context of innovating an organization’s 

BM (Ebel et al. 2016; Osterwalder and Pigneur 2013; Veit et al. 2014). 

Furthermore, academia has proposed different design possibilities concerning IT 

tools for supporting BM innovation, i.e., BM development tools (e.g., Ebel et al. 

2016; Schoormann et al. 2021; Szopinski et al. 2020). Szopinski et al. (2020) 

elaborated a taxonomy of 43 functions of BM development tools. These 

functions provide a useful template for designing IT-supported BM tools. 

However, digital BMs and data-driven BMs have a significant difference. A digital 

business model creates value through using (innovative) digital technologies. The 

means of production typically focus on software and information systems. 

Conversely, a data-driven BMs creates value through data and data processing 

(Spiekermann 2019). The means of production are not about software but 

statistics and data science. Key activities include collection, preprocessing, 

analysis, presentation of data. Since the key resources and activities differ 

between BMs and data-driven BMs, BM tools are not very helpful for innovating 

an organization’s business logic toward a data-driven BM (Fruhwirth et al. 2020). 

At the same, research on IT tools that support data-driven BM innovation is 

scarce. We address this lack and design an integrated IT tool for supporting data-

driven BM ideation and evaluation. 



3 Research Approach 

 

We employ the design science research methodology by Peffers et al. (2007), 

which is suitable for tackling real-world design problems. Our research plan is 

visualized in Figure 1, with preliminary results and future research indicated by 

checkmarks and empty circles, respectively. In this paper, we derive design 

features from the literature for an IT tool supporting data-driven BM innovation. 

The IT tool extends an existing tool that has been developed by the focal research 

team. The design features are conceptualized and visualized as mock-ups. In 

follow-up work, the features shall be implemented as a software prototype, 

iteratively improved by feedback retrieved through focus groups. Afterward, the 

prototype shall be evaluated in a laboratory experiment as an artificial evaluation 

episode (cf. Venable et al. 2016). Finally, a naturalistic evaluation period shall test 

the prototype in digital innovation projects with small and medium-sized 

enterprises (SMEs) (cf. Venable et al. 2016). 

 

To better inform our design science research plan, we opt for identifying the state 

of the art of data-driven BM tools. Thus, we perform a systematic literature 

review that extends the results by Fruhwirth et al. (2020) from May 2019. Our 

literature review methodology follows the recommendations by Webster and 

Watson (2002) and vom Brocke et al. (2009, 2015). We update the set of relevant 

articles within the time frame from early 2019 until October 2021 (see Appendix). 

The search string is adopted from Fruhwirth et al. (2020) and queried in the AIS 

Electronic Library, IEEE Xplore, Science Direct, Scopus, and Web of Science. 

For Google Scholar, a simplified search string (“data-driven business model”) is 

used. The articles are filtered according to literature valuation by Fruhwirth et al. 

(2020) and extended by a forward and backward search (Webster and Watson 

2002). Based on the literature review, three researchers elaborated the design 

features for the intended IT-supported data-driven BM tool within four 

workshops. More specifically, the researchers jointly analyzed the literature to 

abstract recurring tool concepts into design knowledge for data-driven BM tools 

and, afterward, derive design features. Thereby, the resulting design features had 

to comply with two meta-requirements: First, potential features should support 

the ideation or evaluation of data-driven BM innovations. Second, potential 

features should integrate well into the existing concept of the already 

implemented IT tool. 



 
 

Figure 1: Research Approach adapted from Peffers et al. (2007)



4 Designing Tools for Data-driven Business Models 

 

4.1 Initial Artifact 

 

Following the objective to extend the existing IT-supported BM tool by 

Hermann et al. (2021) with a data-driven perspective, this section gives an 

overview of the initial tool’s logic and composition. PlanDigital has been 

developed in the course of multiple small-scale digital innovation projects in 

SMEs. PlanDigital integrates three selected BM tool concepts into one 

comprehensive toolset, i.e., a roadmapping tool, a BM documentation tool, and 

a tool for documenting company goals. The roadmapping tool can be considered 

the tool’s nexus, connecting the two other tools. On a roadmap, the user can 

orchestrate new BM innovation ideas along four time ranges: as-is, short-term, 

mid-term, and long-term. The continuous implementation of new ideas brings 

along changes to (components of) a company’s BM. To depict such changes, the 

user can model explicit links between innovation ideas on the roadmap and 

affected BM components. Moreover, PlanDigital lets users document various 

versions of a company’s BM. Besides the effects on a company’s BM, 

digitalization ideas are ultimately meant to contribute to the company goals. 

Company goals describe contextual boundaries that new ideas must adhere to. 

PlanDigital provides features to define company goals and assign new ideas from 

the roadmap to the fulfillment of those. These core features of PlanDigital are 

implemented as two different modes, i.e., (1) an explorative, single page 

dashboard-like view and (2) a stepper view that navigates the user in a wizard-

like fashion. 

 

4.2 Data-driven Design Features 

 

In our literature review, we found additional 40 articles. With the 33 articles 

already identified by Fruhwirth et al. (2020), in sum, 73 articles are considered 

relevant for our research objective (see appendix for further details). Despite 

numerous articles published only in the past two years, the results reflect previous 

findings by Fruhwirth et al. (2020). First, there is an imbalance between tools 

supporting ideation and those supporting idea evaluation tasks. Second, while 

most types of contributions are somewhat equally distributed in the literature, IT 

tools are again underrepresented. Next, we present new features that are planned 

to be integrated into the Data Innovation Explorer to enable and facilitate data-

driven BM innovations (see Figure 2). Data-driven BM innovation needs to 



consider different perspectives, such as data (DF1) and business (DF2) while 

incorporating the temporal dynamics (DF3). DF4 brings everything together in 

an overview with best practices. 

 

1. Describe and assess the potential of available data sources: 

According to the initial version of the software tool (cf. Section 4.1), 

every digital innovation is connected to an enabling technology. Those 

innovation-technology combinations continuously generate data 

available for new data-driven innovations. Since BM elements are 

explicitly linked to digital innovations (cf. Section 4.1), each element is, 

in turn, linked to those available data. Thus, existing data sources can be 

visualized for the various BM components. To include the underlying 

data in developing new data-driven innovation ideas, the Data Innovation 

Explorer integrates features that enable the description and assessment 

of existing sources. Such sources are depicted in the form of a dedicated 

data potentials profile. The profile reports on data origin (e.g., Hunke et 

al. 2019), data format (e.g., Kronsbein and Mueller 2019), source 

technology (e.g., Rizk et al. 2018), data entity (e.g., Weking et al. 2020), 

and data quality (e.g., Kühne and Böhmann 2019). 

 

2. Document data requirements and relevant capabilities for new 

data-driven innovation ideas: It is usually more cost-effective for 

organizations to exploit the current resource base instead of starting on 

the green field. Therefore, the Data Innovation Explorer integrates features 

for evaluating the gap between available and required data and 

capabilities, following a bottom-up approach for generating new data-

driven innovation ideas (Barann et al. 2019). The Data Innovation Explorer 

visualizes the gap between existing and required data regarding the 

dimensions data origin, data format, source technology, data entity, and 

data quality (e.g., Kayabay et al. 2022). A green color indicates a match, 

and a red color highlights a gap. For every new idea, the Data Innovation 

Explorer shows which data sources are considered for assessing the (mis-

)match. 

 



 
 

Figure 2: Mock-ups of the Design Features 

 

3. Enable different entry points for defining data-driven innovation 

ideas: To account for the dynamics of creative ideation processes (cf. 

Section 2.2), the Data Innovation Explorer offers three different paths for 

the generation of new data-driven ideas: idea generation may be 

technology-driven, BM-driven, or driven by innovation exploration (e.g., 

Rashed and Drews 2021). This feature is integrated into the Data 

Innovation Explorer by pre-configuring the stepper-view (cf. Section 4.1). 

For instance, if idea generation follows a technology-driven approach, 

existing technologies are documented and analyzed early in the process, 

that is, immediately after defining company goals. Defining company 

goals is fixed as the first activity to set the contextual boundaries of the 

innovation process (e.g., Benta et al. 2017). 

 

4. Provide templates of best practice data-driven BMs: Since the 

generation of data-driven innovation ideas is a creative and non-routine 

process, the Data Innovation Explorer integrates a collection of best 

practice data-driven BM types (e.g., Hartmann et al. 2016). Especially in 

early ideation activities, organizations benefit from overviews of best 
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practices and pre-filled tools (e.g., Barann et al. 2019). The set of pre-

filled canvases is thought of as a source of inspiration and orientation 

for developing data-driven BMs. 

 

5 Evaluation 

 

We plan to evaluate our prototype in an iterative two-phase process for the 

artificial evaluation phase. The first phase consists of developmental feedback 

for improving the prototype and is based on conducting focus group discussions. 

After polishing the prototype, we plan to implement a controlled laboratory 

experiment to quantify the outcomes of user satisfaction as well as creativity and 

innovation support. 

 

5.1 Focus Group 

 

Our approach to focus groups follows established methodological 

recommendations (Crossley 2002; Krueger and Casey 2015). Inviting up to ten 

experts with experience in digital transformation, data-driven BMs, and data 

analytics, we conduct a focus group session lasting about 1-2 hours. During this 

focus group session, we divide the group into two subgroups and devise a 

hypothetical scenario in which we describe an existing business. The groups are 

assigned the task to develop and flesh out a data-driven BM based on the 

description of the business and using the tool’s various perspectives and features. 

The data-driven BM should incorporate the existing technologies and capabilities 

and propose a mechanism for generating and capturing value. A guide is assigned 

to each group to help and advise concerning the tool’s features or the task’s 

peculiarities. Then, the groups are pooled, and in a focus discussion with all 

participants, further feedback is gathered and discussed. The discussion is 

recorded, transcribed, and coded (Kuckartz 2014; Saldaña 2015). The research 

team derives insights regarding the design features from the coded results and 

adapts the design and implementation of the tool accordingly. 

 

5.2 Experiment 

 

After implementing the suggested changes derived from the focus group 

discussion, we set up an experiment. We adapt the same scenario that is used in 

the focus groups, making changes as necessary to reflect updates in the tool. 

Participants (n=50) work in groups of five for about 2-3 hours. They develop 



and flesh out a data-driven BM based on the description of the business 

according to the scenario depicted before. The experiment follows the 

randomized controlled trial protocol (Schulz et al. 2010) and randomly allocates 

the groups to a treatment or control intervention, equally distributed. The 

treatment groups make use of the newly implemented version of the tool. In 

contrast, the control groups use the initial artifact of the tool that does not have 

any specific features supporting data-driven BM innovation. We record 

important control variables such as age, gender, colocation, and job role, to 

account for confounding effects (Maier, Laumer, Tarafdar, et al. 2021; Maier, 

Laumer, Thatcher, et al. 2021). The outcome variables are user satisfaction and 

innovation & creativity support, collected through a survey instrument. For user 

satisfaction, we adapt the SUS user satisfaction scale by Brooke (1996), which 

has been empirically validated extensively (Bangor et al. 2008; Borsci et al. 2015). 

For innovation and creativity support, we aggregate and adapt the scales from 

Lukes and Stephan (2017), Janssen (2000), and Zhou and George (2001). We 

further model an interaction effect for IT affinity towards both user satisfaction 

and creativity and innovation support. The hypothesized model is illustrated in 

Figure 3. We estimate the model using SEM-CB, which is adequate for exploring 

causal inferences from survey data (Bollen and Pearl 2013). Since the participants 

are assigned to groups, we model unobserved group effects by adding a group 

fixed effect. 

 

 
 

Figure 3: Hypothesized Evaluation Model 

 

Follow-up interviews provide qualitative insights into how the participants 

experienced working with the tool. Drawing upon the quantitative and qualitative 

results, we conclude about the effectiveness of the designed and implemented 

prototype regarding user satisfaction and its effect on supporting creativity and 

innovation for developing data-driven BMs. Furthermore, we identify further 

potential for improvement left for the natural evaluation episode. 
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6 Concluding Remarks 

 

The ideation phase of the BM innovation process has received considerable 

attention in academic literature (Foss and Saebi 2018). Recently, scholars have 

focused on the emerging sub-domain of data-driven BM innovation (Fruhwirth 

et al. 2020). While there are many tools for supporting the ideation of digital BM 

innovations, tools for supporting data-driven BM innovation are scarce and only 

lately being designed and developed (Fruhwirth et al. 2020). In this paper, we use 

the literature review by Fruhwirth et al. (2020) to derive four core features of IT-

supported data-driven BM innovation tools that can be integrated into 

PlanDigital: (1) describe and assess existing data potential, (2) document data 

requirements and relevant capabilities, (3) enable different entry points for data-

driven innovation, and (4) provide templates of best practice data-driven BMs. 

 

The Data Innovation Explorer shall increase the effectiveness of the data-driven 

BM innovation process and lead to higher success rates in developing new data-

driven BMs compared to using no such tool. Until today, we have developed a 

conceptual design for the Data Innovation Explorer, comprising a definition and 

graphical representation of the four features. Therefore, the effectiveness of the 

Data Innovation Explorer has not been proven yet. Following Venable et al. (2016), 

we intend to evaluate a prototype in an artificial evaluation episode by conducting 

focus groups and a laboratory experiment. With the experiment, we estimate how 

the prototype improves user satisfaction and supports creativity and innovation. 

Finally, rather than proposing a new tool to support data-driven BM innovation, 

we integrate propositions from the literature into an already existing IT solution 

to ultimately help practitioners in ideating and evaluating new data-driven BMs. 

 

The limitations of our study include that the prototype is in development but not 

yet finalized. Consequently, the design is conceptual and has not been empirically 

evaluated yet. Since there are no comparable data-driven BM tools available, 

there will be no baseline to compare the evaluation results. Although the 

scientific risk includes the possibility of negative evaluation, the Data Innovation 

Explorer builds upon a previous iteration of PlanDigital which was positively 

evaluated. Furthermore, the Data Innovation Explorer builds upon standard 

frameworks and packages. By building the tool, design knowledge about data-

driven BM tools is generated. The evaluation of the Data Innovation Explorer 

generates theoretical insights about the success factors of data-driven BMs and 

their components. 
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